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We present a formulation of the correlated electron-ion dynamics (CEID) by using equations of motion for
nonequilibrium Green’s functions, which generalizes CEID to a general nonequilibrium statistical ensemble
that allows for a variable total number of electrons. We make a rigorous connection between CEID and
diagrammatic perturbation theory, which furthermore allows the key approximations in CEID to be quantified
in diagrammatic terms, and, in principle, improved. We compare analytically the limiting behavior of CEID
and the self-consistent Born approximation (SCBA) for a general dynamical nonequilibrium state. This com-
parison shows that CEID and SCBA coincide in the weak electron-phonon coupling limit, while they differ in
the large ionic mass limit where we can readily quantify their difference. In particular, we illustrate the relation
between CEID and SCBA by perturbation theory at the fourth order in the coupling strength.
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I. INTRODUCTION

One of the most fundamental problems in molecular elec-
tronics is to understand the inelastic scattering effects of
atomic vibrations on transmitted electrons. These effects
have been extensively studied both experimentally and theo-
retically in recent years.! The interplay between electronic
and nuclear dynamics in atomic-scale devices influences not
only the device characteristics, e.g., inelastic current-voltage
spectroscopy,’ but also the device stability due to local heat-
ing within the junction.?

Nonequilibrium Green’s-function (NEGF) theory*~° pro-
vides a systematic framework for describing the effects of
the coupling between transmitted electrons and atomic
vibrations.””!® For weak electron-phonon coupling, a well-
known approximation for evaluating the dressed Green’s
function is the self-consistent Born approximation (SCBA)
(Refs. 8—10) which sums only noncrossing diagrams in the
diagrammatic perturbation expansion of the Green’s func-
tion. Because the percentage of noncrossing diagrams de-
creases quickly with increasing order in the coupling
strength, SCBA breaks down at strong electron-phonon
coupling.!!

Alternatively, correlated electron-ion dynamics (CEID)
(Refs. 2, 12, and 13) has been developed for describing the
effects of the electron-ion correlation and interaction on the
inelastic dynamics of the electrons and nuclei. CEID, as an
extension of molecular dynamics, reinstates the electron-ion
correlation and the quantum nature of nuclei in order to take
account of energy exchange between electrons and nuclei
reasonably. So far CEID has been applied to a wide range of
transport properties of atomic wires, including the inelastic
current-voltage spectroscopy,? the calculation of local heat-
ing (and its signature on the current) in real time when com-
bined with electronic open boundaries,!* and the nonconser-
vative nature of current-induced forces.! Recently, a
comparison between CEID and the NEGF method in SCBA
has been made both numerically and analytically for steady-
state transport.'® However, there are two restrictions on
CEID discussed above. First, it is assumed that the electron-
ion system is described in terms of an ensemble with a fixed
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total number of electrons. Second, the CEID methodology
lacks a systematic scheme to improve its accuracy.

In this paper, we develop a formulation of CEID by using
equations of motion for a set of nonequilibrium Green’s
functions which are closely linked to the dynamical variables
in the CEID method. To illustrate this idea, we consider a
model system of noninteracting electrons linearly coupled to
a quantum oscillator. The motivation behind this effort is to
lift the restrictions on CEID. We attempt to make a rigorous
connection between CEID and diagrammatic perturbation
theory so as to quantify the key CEID approximations in
diagrammatic terms and, in principle, to be able to improve
them. Moreover, in the framework of NEGF, the scope of
CEID can be readily extended to a general nonequilibrium
ensemble with a variable total number of electrons. We com-
pare analytically CEID with SCBA for a general nonequilib-
rium state in the time domain, thus extending the previous
comparison!® for a steady state in the energy domain.

The paper is organized as follows. In the next section, we
present the formulation of CEID for the model system by
using equations of motion for a set of nonequilibrium
Green’s functions. In Sec. III, CEID is analytically compared
with SCBA for the model system at the fourth order in the
coupling strength and in two specific limits: weak electron-
phonon coupling limit and large ionic mass limit. Finally,
conclusions are drawn in Sec. IV.

II. MODEL AND FORMULATION

We consider an infinite open system of noninteracting
electrons linearly coupled to a single quantum oscillator. The
electrons are described in terms of the second-quantized field
operators W(r) and W*(r). The Hamiltonian of the system
then takes the form

2
H= f dr‘l“(r)(— ;—mvz + V("))‘I’(V)

{P—2 lsz} deF PH(r)W 1
HETAD) - rE(r)VH(nWw(r), (1)

with X=R-R,. The first two terms constitute the free-
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particle Hamiltonian H,, and the last term describes the
electron-phonon interaction H'. Here V(r) is the lattice po-
tential and F(r) is the electron-phonon coupling strength. R
and K are the equilibrium position and the spring constant of
the harmonic oscillator, respectively.

In the absence of electron-phonon interaction H' (taken to
exist at r=-o0), the unperturbed electron subsystem was
settled in the Landauer steady state, which is characterized
by two sets of one-electron states, i.e., Lippmann-Schwinger
scattering states, {|®,,)} (@=1,2) with occupancies f;, set by
the battery terminals.'”!8 In the |®,,) representation, the sta-
tistical operator of the unperturbed system is thus taken to be

1 ( P’ 1KX2>
= — — —_— 4 —
po=exp) — Bl {5+ 5

2
+ 2 2 (Sia - /*La)c;—acia] s

i a=1

where B=1/kpT is the inverse temperature, electrons occu-
pying the two sets of Lippmann-Schwinger scattering states
are characterized by the chemical potentials u,(a=1,2), re-
spectively, and Z is a normalization factor ensuring that
Tr(py)=1. Here, {c}} and {c,,} are the creation and annihi-
lation operators for the complete and orthonormal set of the
Lippmann-Schwinger scattering states {|®,,)}. The fermion
field operator W(r) [W*(r)] can thus be expressed as a linear
combination of {c;,}({c].}).
We now define the contour-ordered Green’s function as

G(rt,r't") = (ih) T (r)) i (r't')), 2)

where the angular bracket (---)=tr(py **). By virtue of the
grand-canonical structure of p,, we have thus allowed for an
ensemble with a variable total number of electrons. The con-
tour C runs from f=—% to r== along the upper branch and
then returns to t=—o0 along the lower branch. Here i(rt)
and j,(r't") are the fermion field operators in the Heisen-
berg picture.

Parallel to the procedure of CEID,'® our main aim is to
derive the kinetic equation for the one-electron density ma-
trix. Then the key quantity of interest is the lesser Green’s
function  G=(rt,r't")=—(ih) "N, (r't" ) ihy(rt)) since its
equal-time value gives the one-electron density matrix,

r' 1) =—ihG=(rt,r't) = (Y (r't) iy (r1)). (3)

We first derive the equation of motion for the contour-
ordered Green’s function G(rt,r't’). Differentiating
G(rt,r't") with respect to time arguments and then using
equations of motion for the Heisenberg operators, one ob-
tains

Lifd, = h,(r)]G(rt,r't") = 8r=r") 6c(t —t") = F(r)T ,(rt,r't"),
(4)

pe(r.t

[—ihdy —h,(r)]G(rt,r't")=8r—r1")oc(t—1")
=Lt r" (), (5)

where he(r)=—§V2+V(r) and S-(r—1') is the contour delta
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function.® Two nonequilibrium Green’s functions are intro-
duced here;

U (rt,r't") = (i) (T Xy (@) g (rt) (' 1)), (6)

L (rt,r't') = () KT epu(r) i (r' t)Xu(@)). (7)

Combining Egs. (4) and (5) gives

1 1
), =—|h -—|F 8
Pe iﬁ[ e Pel iﬁ[ TR (8)

where  we  used  p(r.t|r',t)=—ih lim,_ /[ (3,+3,)
G(rt,r't")]= and the first moment u(r,t|r’,t) is defined as

r't)=- iﬁFz(rt,r't) =- iﬁrf(rt,r't)
= (Y (r' ) y(r) X (1)) )

Note that the kinetic equation (8) always ensures the con-

m(r,t

servation of electron number since the relation (Ne>=tr De
=0 holds due to the cyclic invariance of the trace.

We proceed to find the equations of motion for
r,(rt,r't'),

[i7:0; = ho(r)IT ,(rt,r't") = 8(r = ") 8c(t = t' X p(1))
ih
- F(r)l,, (rt,r't") + er(rt,r’t’),
(10)
[ ifidy = ho(r)IL,(rt,r't') = 8(r = r") Oc(t = ' X p(1))
—F/'h(rt,r't')F(r’), (11)
where three nonequilibrium Green’s functions are defined as

Dy\(rt,r't") = (ih) AT Py(0) g (rt) i (r' ")), (12)
U, (rt,r' 1) = (ih) N T X (0 g rt) g (r' 1)), (13)

I (rt.r't") = (i) KT X () Y (r) i (r' 1) X (1))
(14)

In order to obtain a closed set of equations of motion, we
decouple the higher-order Green’s functions I' le(rt, r't") and
Fl’tz(rt,r’t’) as follows:

U (rt,r't") = Cre()G(rt,r't"), (15)

F;Lz(rt,r't') ~ ihD(t,t')G(rt,r't’), (16)

where D(t,t")=(ih)" (T Xy (t)Xy(t")) is the dressed phonon
Green’s function and Cgg(t)=ihD=(t,t). Using these decou-
pling approximations and the relation w(r,t|r',1)=
—ifi lim,_ [ (9,+ )" ,(rt,r't")]=, we combine Eqgs. (10) and
(11) to yield
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1 N
[he’ /’L] CRR[F pe] +— M (17)

ih

where we have applied the Langreth theorem™>® to calculate
l"l’;(rt,r’t’)=iﬁD<(t,t')G<(rt,r’t’), and the first moment
r',1) is defined as

— i (rt, 7€) = (it (r' 1) oy (rt) Py (1))
(18)

A1) =

We continue to derive the equation of motion for
Ly(rt, '),

[ihd, = h(r)]U\(rt,r't") = 8(r — r") 6c(t — t'){(Py(1))
—ihKT ,(rt,r't") + A(rt,r't")
- F(L,,(re.r't"), (19)

[ ifidy = h (r)IC\(rt.r't') = 8(r = 1) 6c(t = ' )(Py(1))
Ly (et e )E("),  (20)

where three nonequilibrium Green’s functions are defined as

A(rt,r't') = f droF (ro){T ey (rot) b (rot) i (rt) iy (r' 1)),

(21)
Ty (rt,r' 1) = (B NI ePy(DX (0 g (r)) (' 1)),

(22)
L3, (rt,r' 1) = (ih) TP y(0) gy (rt) g (r' £ X (1))

(23)

To decouple the above higher-order Green’s functions, we
make the following approximations:

A(”l,r'f')xfdroF(ro)<¢;1(rof)‘/’H(VOI)XTC‘//H(”)'ﬁ](”’f'»

—Jdro(%(rof)l//H(rl»F(ro)
X{T ety (rot) Y (r't"))

= th droF (ro)p.(ro,0)G(rt,r't")

- lhf drOpe( >

Dyt r't') = (ih) Py X (0T ciby(r)) i (r' 1))

ro, ) F(rg) G(rot,r't"), (24)

i
= Cpp(DG (1) - ’EG(rz,rw), (25)

F;\M(rt,r't') =(TcPy(t)Xy(t")G(rt,r't"), (26)

where CPR(t)=%(PH(t)XH(t)+XH(t)PH(t)>. Using the above
\(r,t]r',0)=
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FIG. 1. (a) Zero- and second-order noncrossing diagrams in the
exact F’ (rt r't") [see Eq. (14)]. (b) The diagrammatic representa-
tion of the CEID decoupling approximation for I}, (rt r't") [see
Eq. (16)]. The thick (thin) straight line represents dressed (bare)
electron Green’s function. The thick (thin) wavy line represents
dressed (bare) phonon Green’s function. We ignore Hartree-type
diagrams and corrections to a phonon line.

—ifi lim,_, /[ (8,+3,/)T\(rt,r't")]~, we combine Egs. (19) and
(20) to arrive at

1 1
= E[heﬂx] +tr(pF)p, + E{F Pt — PP,

1
- %CPR[F’ p.l - Ku, (27)
where the Langreth theorem is applied to calculate

F’<(rt 't =(Xy(t")Py(t))G=(rt,r't").

K1net1c Eqgs. (8), (17), and (27) are identical to those de-
rived in Refs. 2 and 16, except that an extra term tr(p,F)p,
appears and a wFu term disappears in Eq. (27) compared
with the corresponding equation in Refs. 2 and 16. The rea-
son for the presence of the extra tr(p,F)p, term is that, in the
previous CEID,>!¢ the expansion was with respect to AR

=R—E, whereas we, for convenience, here use X=R—-R,, in-
stead. In the previous CEID, the uFu term results from
higher-order corrections to the Hartree-Fock decoupling for
the two-electron density matrix in Eq. (24), which, however
is not considered in the present formulation. Apart from the
two differences, the present formulation of CEID is parallel
to the previous CEID.

In order to have a closed set of equations, one can derive
the perturbation expansion for Cgg(z) and Cpg(z) by using the
expression®

(An(0By(0) = (T ™t D0A, (0B, (1))

It is obvious that Wick’s theorem can be applied directly to
the T¢ products of ¢y s and zﬁ,o’s. For simplicity, we shall
only retain the zero-order term in the expansion. Thus we set
Crr()=ihDg (t,1)=C (C is a constant) and Cpg(t)
=%(PHO(I)XHO(I)+XHO(t)PHO(t)>=0. We shall hereafter con-
sider the bare phonon Green’s function Dy(z,¢) only, instead
of the dressed one D(z,t').

Decoupling approximations (15), (16), and (24)-(26) are
the defining approximations in the previous CEID method.?
Their key effect is to yield single-time equations of motion.
These approximations can be well understood in the frame-
work of diagrammatic perturbation theory as follows. Each
of them represents a subset of diagrams in the diagrammatic
perturbation expansion of the corresponding Green’s func-
tion. As shown in Fig. 1 where we use F;Lz(rt,r’t’) as an
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example, decoupling approximation (16) includes the first
diagram in Fig. 1(a) and consequently coincides exactly with
the exact perturbation expansion at the lowest order, while it
includes only the second diagram in Fig. 1(a) at the second
order.

In the NEGF-based formulation, CEID can be systemati-
cally extended in two possible ways. Following the standard
equation-of-motion technique, one may extend the hierarchy
of coupled equations of motion for Green’s functions and
then truncate the hierarchy somewhere by some sort of de-
coupling procedure in which a higher-order Green’s function
is expressed approximately as a product of lower-order
Green’s functions. Another possibility is to improve the de-
coupling approximations for Green’s functions I' o F;Lz, A,
'y, and Iy . Dy adding correction terms. For instance, the
last diagram in Fig. 1(a) (a second-order noncrossing dia-
gram in the exact perturbation expansion for Fl'Lz) which is
absent from Fig. 1(b) serves as a second-order correction
term to decoupling approximation (16) illustrated in Fig.
1(b). We shall focus on the way of making corrections to
CEID decoupling approximations since it does not result in a
higher hierarchy of coupled equations (see Sec. III B).

We have thus rederived the CEID equations of motion
from nonequilibrium Green’s functions and generalized them
to an ensemble which allows for a variable total number of
electrons. Moreover, the present formulation allows the key
approximations in CEID to be quantified in diagrammatic
terms and provides an in-principle way to improve them.

III. COMPARISON WITH THE SELF-CONSISTENT BORN
APPROXIMATION

A. Weak electron-phonon coupling limit

The CEID equations of motion to lowest order in F read
as

1
p = —[he,pe - l._h[F,M(l)], (28)

1 A
1D = —[h,, uV ——CF +— 29
s iﬁ[e#' ] [F.p!"] R (29)

A = —[h A0+ tr(p(O)F)pgo)

+ {F O} = pOFpO _ g, (30)

where the superscript denotes the order in the coupling
strength F. Note that decoupling approximations (15), (16),
and (24)—(26) are exact to lowest order in F. Hence the
above kinetic equations yleld the exact p, 2 . According to Eq.
(3), the density matrix p, 2 must correspond to the sum of all
the second-order terms (the Hartree and Fock diagrams) in
the perturbation expansion of Green’s function G(1,1’),
which reads as

PHYSICAL REVIEW B 79, 235102 (2009)

(@) (b)
FIG. 2. The diagrammatic representation of the fourth-order
SCBA Green’s function G¥(1,1).

G2(1,1") = u(p"'F) f d2dt3Dy(t5,15)Go(1,2) F () Go(2,1")

+ lﬁf d2d3G0(1,Z)F(rz)Do(t2,t3)G0(2,3)

XF(r;)Go(3,1"). (31)

Here we use a common short notation (k) = (r.;,). Starting
from this equation, one can also easily derive Egs. (28)—(30)
with the equation-of-motion technique and furthermore iden-
tify that the second term at the right-hand side of Eq. (30)
comes from the contribution of the Hartree term.

Recall that in SCBA the sum of the second-order terms
GZp 4. ie., the first Born approximation (BA), involves both
the Hartree and Fock diagrams and coincides exactly with
Eq. (31). Hence, in the weak electron-phonon coupling limit
CEID agrees exactly with SCBA for an arbitrary nonequilib-
rium state of the electron-ion system, which extends the
range of validity of the conclusion in the previous
comparison'® for a steady state in the energy domain.

B. Fourth order in the coupling strength

We shall go beyond the weak electron-phonon coupling
limit and compare CEID and SCBA at the fourth order in F.
For simplicity, Hartree-type diagrams (with a closed fermion
loop) will be excluded from our analysis. Let us consider the
fourth-order SCBA Green’s function G¥(1,1')=A,(1,1")
+A,(1,1") which is represented by the following two dia-
grams:

Al(l, 1 ’) = lﬁj d2d3G0(1 ,Z)F(rz)Do(tz,t3)G0(2,3)F(}’3)

xGP(3,1'),

Az(l, 1 ,) = lﬁf d2d3G0(1,2)F(r2)D0(1‘2, ts)
XG(2,3)F(r3)Gy(3.1").

These diagrams are shown in Figs. 2(a) and 2(b),
respectively.  Here  GP(1,1")=ih[d2d3Gy(1,2)F(r,)
X Dy(ty,13)Go(2,3)F(r3)Gy(3,1") since the Hartree diagram
is 1gnored Kinetic equations for G™W(1,1") with respect to t,
and 1] yield p(4)—(zﬁ) l[he,pe 1-(in)'[F,u®] where the
corresponding F ) (1,17)=B,(1,1")+B,(1,1") contains two
terms,

Bl(l N 1 ’) =- lhf dzD()(tl,tz)G()(] ,2)F(r2)G(2)(2,] ’),
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By(1,1") =~ deDo(tlJz)G(z (1,2)F(ry)Gy(2,17).

Note that B;(1,1') and B,(1,1’) result from the temporal
derivatives of A;(1,1’) and A,(1,1"), respectively. The ki-
netic equations for FS)(l ,1') read as

ihd, )11 = h(r)T0(1,17)
- F(rp[CGP(1,1") +5,(1,1")]

roa,r’
+ ihM, (32)
M

—iha, TP (1,1 =T(1,1)h(r])

—[iiDy(t1,))GP(1,1") + S,(1,1")]F(r}),
(33)

where
Si(1,1") = (iﬁ)zf d2d3Dq(t,,t3)Do(t,1,)Go(1,2)F(r,)

XGy(2,3)F(r3)Go(3,1'),

S,(1,1") = (ih)zf d2d3Dy(t,,1,)Go(1,2)F(r)) Go(2,3) F(r3)

XDO(t:i’t;)GO(?)’l/),
and T(1,17)=C(1,1")+Cy(1,1") where

C(1,1") =~ ih f d2Gy(1,2)dy(t),1) F(r)) GP(2,1),

C,(1,1") =ik f d2dy(t,,1)GP(1,2)F(ry)Gy(2,1"),

with  dy(t,t")= (iﬁ)‘l(TCPHO(t)XHO(t’)) The two terms
in the square bracket in Eq. (32) [Eq. (33)] correspond to all
the second-order noncrossing diagrams in
I, (1,1 NI, (l 1')] [see Egs. (13) and (14)], while
CG(Z)(l 1’ )[tho(tl,t )G®(1,1)] corresponds to the single
second-order diagram in the decoupling approximation for
Fﬂz(l,l’)[Fl’Lz(l,l’)] [see Egs. (15) and (16)] where
S,(1,17)[S,(1,17)] is not present. This was illustrated in Fig.
1, where ihDq(t;,t])G?(1,1') and S,(1,1') in Eq. (33) are
associated with the second and third diagrams in Fig. 1(a),
respectively. Equations (32) and (33) lead to

el L0 o, A

1> = —|h,, ——CF +—+1I,,

f iﬁ[ u] [F.p,"] o Hl

r' )=F(r)Sy(rt,r't) =S5 (rt,r't)F(r'). Tt is
seen that II,, contributed by the diagrams S;(1,1") and
S,(1,1"), serves as a correction to the CEID equation of
motion for u® [cf. Eq. (17) at the third order] so as to make
CEID equivalent to SCBA at the fourth order in the coupling
strength. However this correction no longer involves just
single-time quantities.

PHYSICAL REVIEW B 79, 235102 (2009)

One can proceed to analyze the kinetic equations for
F(f)(l ,1') in a similar manner,

ih3, TO(1,17) = ho(r) TP, 1) = Fr)[(Py (1) X (1))
XG(Z)(I,I’)+S3(1,1’)]—iﬁf dry
><pio)(rl,tl|r0,t1)F(r0)G(2)(r0t1,r{t{)

- iﬁf d”opgz)("bh|”0J1)F(”0)Go(”011,”iti)
—ihKTP(1,17), (34)

= ik, TO(1,1) =T (1,1)h(r)

— Litdy(t,,1))GP(1,17) + S,(1,1")]F(r}),
(35)

where

S5(1,1") = (iﬁ)zf d2d3d(t,,t3)Do(t,,12) Go(1,2) F(r,)

XGO(Z’S)F(r3)GO(3’ l ,)

and
S,(1,1") = (ih)? f d2d3dy(t1,1,)Go(1,2)F(ry) Go(2,3)F(r3)

X Dy(13,11)Go(3,1").

The two terms in the square bracket in Eq. (34) [Eq. (35)]
correspond to all the second-order noncrossing diagrams in
[y (1L, 1[0 (1,17)] [see Egs. (22) and (23)], while
(Py,(11)Xpy, (t)HGA(1,1 Ditido(t;,1)GP(1,1')] is  the
single second-order diagram in the decoupling approxima-
tion for I'y ,(1,1")[T'} ,(1,1")] [see Eqs. (25) and (26)] where
S5(1,1M)[S4(1,17)] is not present.
From Eqgs. (34) and (35) one obtains

NE- —[h )\(3)]4_ {F p(Z)} (0) p£2)+p£2) iO))

- KM’B) + H)\»

r',t) =F(r)S3<(rt, r't) —S4<(rt, r't)F(r") which
serves as a correction to the CEID equation of motion for
A3 [cf. Eq. (27) at the third order]. Note that a term similar
to the second term in the right-hand side of Eq. (30) does not
appear because of the exclusion of Hartree-type diagrams.
We have thus identified explicitly the corrections to the
CEID equations of motion for £ and \® added by SCBA.
These correction terms are contributed by the diagrams
which are absent from the decoupling approximation but are
present in the complete collection of second-order noncross-
ing diagrams for higher-order Green’s functions I" #2(1 1),
F;Lz(l,l’), Iy, (1,17), and F)’\#(l,l’). After this correction,
CEID becomes equivalent to SCBA at the fourth order. In
principle, one may extend this relation between CEID and
SCBA to any order in F. However, the amount of diagrams
increases fast with increasing order so that it would not be
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easy to illustrate their relation in higher-order case.

C. Large ionic mass limit

In the limit of infinite ionic mass, the electron density
matrix is determined by Eq. (8) and

1 1
'=_h, —_CF,e. 36
[ iﬁ[eu] p [F.p.] (36)

Here the constant C corresponds to the equal-time classical
phonon Green’s function because the oscillator with infinite
mass is treated classically (see Appendix B). In Ref. 16, it
was shown that these coupled equations of motion are iden-
tical to the corresponding kinetic equations for the following
effective elastic scattering problem.

Consider noninteracting electrons linearly coupled to a
single infinitely heavy classical degree of freedom X, with a
distribution x(X)= %[5(X - \E) +0(X+ V’E)]. The system can
be described in terms of one-electron density matrix p(X,1)
which is governed by ihp(X,t)=[h(X),p(X,1)] with the one-
electron Hamiltonian h(X)=hy—FX. Define

p.(t) = f p(X,0)x(X)dX,
wlt) = f Xp(X, 1) x(X)dX,

pa(t) = J X*p(X,0)x(X)dX = Cp,.
Then p,(7) is generated exactly by

lhpe = [hO’pe] - [F’ Iu’]’ (37)

it = Lho, ] = CLF, p.], (38)

which are identical to Egs. (8) and (36).'¢ We now proceed to
solve Egs. (37) and (38) in integral form. It is proposed that
for > 1, this solution can be written as

u(t) = u=(2,0), (39)

where p=(¢,t') and u=(¢,t') are defined as

p(1) = p=(1,1),

p(tt') =~ (iﬁ)zj Gx(t.10) p,(10) Gx(to, ") x(X)dX,

(40)

w (') =- (iﬁ)zf XG(t,10) p.(to) Gx(to, 1" ) x(X)dX,
(41)

with [iﬁ(?,—h(X)]G;(t,t’)=6(t—t’). Furthermore G;(t,t’)
can be expressed in an iterative form,
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Gy (t,t") =Gy (t,t) —Xf Gy (L, F(")Gx (t",t")dt",

(42)

with (ihd,—hg)G, (t,')=8(t—t') and F()=6(t—t,)F. One
then finds that (see Appendix A)

p=(t,t)=(1+G*SHpy (1 +3;G7) + G356, (43)
u (t,t)=-C f Ly (t.¢")F(£")G~(¢",1")
+ G(—i)—(t’ l‘”)F(l‘H)p<(l‘H,l‘l)]dl‘”

J—— Cf [p<(t,t,,)F(t,,)Ga(t/,’t,)

+G*(1, t”)F(t")p(f(t",t')]dt”, (44)
with
3o (t,t") = CF()Gy (t,t")F(t'), (45)
E(f(t,t’) = CF(t)p0<(t,t’)F(t’), (46)
po (t,t) = = (ih)>Gy(1,10) pe(10) Gy (2o, '), (47)

G (1,¢') = f Gy (1, x(X)dX = Gy (1,1")

+JGoi(t,tl)E§(tl,tz)G+(t2,t’)dtldt2. (48)

In Eq. (43), A=BC stands for A(¢,t')=[B(t,t")C(¢",¢")drt".
This convention will be used where appropriate hereafter.

In the infinite mass limit, the CEID equations of motion
[Egs. (8) and (36)] have precisely the same form as kinetic
Egs. (37) and (38) for the elastic scattering problem. Hence,
in view of the solution to the elastic scattering problem, we
may, by analogy, suggest the following ansatz to Egs. (8) and
(36) in the context of NEGF [cf. Egs. (44) and (48)]:

GCEID(lvll) = G()(lsl,) + Cf G0(1,2)

X[F(r2)Go(2,3)F(r3)]Gcpp(3,1')d2d3
(49)

and

F,u(l, 1 ,) =- Cj Go(l,z)F(rz)GCEID(Z, 1 ’)d2

=- Cj Geem(1,2)F(ry)Gy(2,17)d2.  (50)

In analogy with the treatment in Sec. II, one can easily
verify that p,(r,t|r',)=—ihGgp(rt,r't) and u(r,t|r',t)=
—iﬁF;(rt,r’t) are solutions to Egs. (8) and (36). In the large
ionic mass limit, the CEID equations of motion are thus ex-
actly solvable based on a correspondence between CEID and
the elastic scattering problem. Interestingly, Dyson Eq. (49)
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is consistent with the BA and Gcgjp contains only one term
at each order in F.

To compare with SCBA, we need the mixed quantum-
classical perturbation expansion for Ggcgs Which, following
the discussion in Appendix B, can be obtained by replacing
the quantum phonon Green’s function by the classical pho-
non Green’s function [Eq. (B3)] in the SCBA Dyson equa-
tion GSCBA= G0+G0FD0GSCBAFGSCBA (the Hartree-type dia-
grams are ignored here). In the infinite ionic mass limit, the
classical phonon Green’s function [Eq. (B3)] is a constant C.
So the SCBA Dyson equation becomes Ggcga=Gy
+CGyFGgcpaF Gscpa- This equation differs from the CEID
solution [Eq. (49)] from the fourth-order term onwards. For
instance, Gs4c)B A=ZG§§%ID. In the large ionic mass limit, the
difference between CEID and SCBA is thus precisely quan-
tified.

IV. CONCLUSIONS

In this paper, we have considered, using the nonequilib-
rium Green’s-function theory, a system of noninteracting
electrons linearly coupled to a quantum oscillator. A set of
kinetic equations, which determine the one-electron density
matrix, is derived with the equation-of-motion technique.
Our work establishes a rigorous connection between CEID
and NEGF and extends the scope of CEID to a general non-
equilibrium ensemble that allows for a variable total number
of electrons. By perturbation theory, the decoupling approxi-
mations used in the CEID methodology can be quantified in
diagrammatic terms.

We have compared the limiting behavior of CEID and
SCBA analytically. In the weak electron-phonon coupling
limit, they agree exactly for a general nonequilibrium state of
the system. In the large ionic mass limit, where CEID corre-
sponds to an elastic scattering problem and can be solved
exactly, the difference between CEID and SCBA emerges
from the fourth-order term and can be quantified. In particu-
lar, we illustrate the connection between CEID and SCBA at
the fourth order in the coupling strength. We find that CEID
occupies a special place between BA and SCBA such that
CEID is simpler than SCBA but is an improvement over BA
in that CEID conserves total number of electrons. The
lowest-order SCBA corrections to the CEID equations of
motion (see Sec. III B) no longer involve just single-time
quantities. This illustrates the sense in which CEID can be
thought of as the simplest particle-number conserving ap-
proximation that, in addition, retains just single-time quanti-
ties.

The present formulation of CEID can be extended to in-
clude multiple quantum oscillators. The purpose of the
single-oscillator model calculation is to illustrate the analyti-
cal features of CEID in a simple way so that an analytical
comparison of CEID and SCBA can be made. Like SCBA,
the present method for CEID is not applicable to problems
with strong electron-phonon correlations, which, however,
have been addressed by another CEID scheme!® recently.
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APPENDIX A: DERIVATION OF EQS. (43) and (44)

In this appendix, we show how to derive Eqgs. (43) and
(44) from Egs. (40) and (41) by using iterative relation (42).
In the derivation, we shall frequently use the following prop-
ertigs of the distribution function y(X)= %[E(X —VO)+8X
+V0)],

J dXx(X)X**1 =0,
f dXx(X)X*"f(X) = f dXx(X)x*" f dXx(X)f(X),

f dX (X)X = f dXx (X)X J dXx(X)x*",

where f(x) is an arbitrary function; m and n are any integers.
In addition, iterative relation (42) can be cast in a useful
form,

Gy =Gy +Gy 2 [(-FX)Gy 1. (A1)
n=1

We first derive Eq. (43). Inserting Eq. (A1) into Eq. (40),
one finds that

0+ Go 2 [(= FX)GET [ e.(to)

n=1

p==-(ih)? f dXx(X)

oo

X3 Gy + Gy 2 [(- FX)G,1" [ .

n=1

(A2)

The right-hand side of this equation can be written as a sum
of five terms,

- (lh)zGSQe(tO)G(; = pO<7 (A3)

— (ihY’Ghe. 1) f dXx(X)Gy(- FX)Gy(- FX)Gy

= — (ih)’Gye,(tg) Go(CFG F)G™ = py 235G, (A4)

- (ih)? f dXxX(X)Gx(- FX)G(= FX)Gge.(10)G,

= (ih)*G*(CFG{F)G0, (1) Gy = G ipy.  (AS)
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o

_ (ihy? f xXx(0! Gy + G5S [ FXIGLT

n=1
X (= FX)G}0,(to)Gy(- FX)Gy

=—(ih)> G*CFG}0,(t)) GoFG™ = G™35G™,  (A6)

— (ih)? f dXx(X)} G§+ Gy 2 [(- FX)GE ™"
n=1
X (= FX)G(- FX)Gj,(1) Gy (- FX)Gy(- FX)

X\ Gy + Gy 2 [(- FX)Gy "

n=1
= — (ih)2G*CFG}FG}0,(ty) GyCFGyF G
=G"3gp G, (A7)
where we have used definitions (45)—(48). Combination of
the above results completes the derivation of Eq. (43).
Now we proceed to derive Eq. (44). Inserting Eq. (A1)
into Eq. (41), one obtains

p= == (ih) f dXx(X)X) Gy + G52 [(= FX)Gg1" [ @.(to)

n=1
oo

X\ Gy + Gy 2 [(- FX)G, 1"

n=1

(A8)

The right-hand side of this equation can be expressed as a
sum of two terms which are either

—(ih)? f AXX(X)XG}0,(10)Gy(~ FX)Gy =~ Cps FG™,

(A9)

— (if) f dXx(X)XGy(~ FX)Gye,(10) Gy =~ CGFp~,
(A10)

or

~ (ih)? J dXX(X)XGY(- FX)Gy0,(19)Gy =~ CG*Fp; .

(A11)

- (if)? f dXX(X)XG}0,(10)Gx(~ FX)Gy = - Cp FGy.
(A12)

From the above results, one can easily achieve Eq. (44).
Furthermore, we have

PHYSICAL REVIEW B 79, 235102 (2009)
G = f dXx(X)Gx
= f dXx(X)| G5 + G 2 [(- FX)Gg I"
n=1

=G, + f dXx(X)G, (- FX)G, (- FX)G™

=Gy, +Gy 2, G*. (A13)

This completes the derivation of Eq. (48).

APPENDIX B: PERTURBATION EXPANSION FOR THE
MIXED QUANTUM-CLASSICAL GREEN’S
FUNCTION

In this appendix, we shall consider the Green’s function
for a system of quantum electrons coupled to a classical
oscillator and then show how to develop a diagrammatic
perturbation expansion for it. The system Hamiltonian takes
form (1) but X and P are classical variables now. The mixed
quantum-classical Green’s function, as usual, can be written
as

G(1,1") = (iﬁ)-l<TC[\IfHO(1)q;;lo(l /)e—i/ﬁfCH;IO(r)dTiI>’

where the angular bracket (- --)=[dXdP tr(py --). To evalu-
ate this Green’s function, we must provide a procedure for
evaluating the average of products of classical coordinates
X’s, while the average of products of electronic field opera-
tors can be evaluated by Wick’s theorem.

Consider a classical oscillator with position, momentum,
and energy,

X(1)=A cos(wt — ),
P(t) =— AwM sin(wt — ¢),
P o1 1
=— + -Mw’X*= “Mw’A?,
2M 2 2
sampled from the canonical distribution
p(x, P) = E2e-v2puo,
2m

Let {...) denote averaging over p. Changing variables from
(X,P) to (A, @) with dXdP—MwAdAd¢,

e[ [

2 [ 27
_ BMw J AdAf d¢._.e—l/2,8Mw2A2.
0 0

2

Our aim is to establish the relation
L= (X(t)X(1) -+ X(tan)) = R = (X(1))X(12))
X{(X(t5)X(14)) - - (X(tan-1)X(t2y)) + all other pairings.
(B1)
Write
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X(1;) = %(ei(wti—¢) + i@ )y = a; -12-61,» , 4= Aei @)

Consider L. Expand and integrate over ¢. Only terms with N
a’s and N a*’s survive. There are
_@n)!
Y

such terms. Each is of the form

1 e}
4_N<’8Mw2f dAA2N+le—1/2,BMw2A2>
0

X (e’w(tkf" : -+tkN)e—zw(tkN+l+- : -+tk2N))

1 N!

= 2_N(B1W—2)N(eiw(tkl+. ’ .+tkN)€_iw(tkN+l+. ' .+tk2N)) s (Bz)
w

with one such term occurring in L for each of the N; possible
groupings of the 2N indices into two groups of N,

{(ky...ky), (Kypy - Ko
Now consider R. Note that the classical phonon Green’s

function,

(X(t)X(t)) = mcos w(t;—1) = YT (el
+ e—iw(’i—’j)) (B3)
In R there are
(2N)!
Np=(2N-1)2N-3)---1= AT

different pairings. Each pairing contributes 2V terms, each of
the form

PHYSICAL REVIEW B 79, 235102 (2009)

1 1 . )
_ —(ew)(tkl+- : -+1kN)e—zw(tkN+l+- ”H’sz)) . (B4)
2N (Bsz)N
Thus, R is composed of
Nz (2N)!2N_ (2N)!
B2V ™ =
terms, each of form (B4).
By  symmetry, every grouping of  indices

{(ky...ky),(kny-. . kon)} that occurs in L occurs in R and vice
versa. Further, by symmetry, if a given grouping
{(ky...ky),(kyyi---kon)} occurs G times in R, then every
other grouping must also occur G times in R. There are N;
groupings. Hence,

G=-f=nN1,
N

and thus every grouping {(k;...ky),(kys...koy)} occurs N!
times in R. Using this and Eq. (B4), we see that in R each
distinct grouping occurs with a prefactor,

L N!
ZN(BMwZ)N’

which is the same as the prefactor with which each grouping
occurs in L [see Eq. (B2)]. Hence L=R. This relation (Wick’s
theorem) allows us to evaluate the mixed quantum-classical
Green’s function as a perturbation expansion involving only
wholly paired nuclear coordinates.
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